
CSC-ūůŪ Computer Science I
The College of Idaho
Spring ŬŪūŰ

Computers are to computing as instruments are to music. Software is the score whose
interpretation amplifies our reach and lifts our spirits. Leonardo da Vinci called music the

shaping of the invisible, and his phrase is even more apt as a description of software.
Alan Kay (aĴributed)

Quick Reference

You will have frequent
homework, submiĴed
sometimes online and
sometimes on paper. See
below for more details. You
are free to work together
on problems, but all work
you submit must be your
own. We also have frequent
quizzes and in-class activi-
ties that cannot be made up.
It is important to come to
class every day.

GRADING

Tier Weight Date

AĴendance &
participation Ū.ūŪ daily

Workshops Ū.ūŪ continual
Quizzes Ū.ūů ū–Ŭ/week
Homework Ū.Ŭů Ŭ/week
Midterm Ū.ūů March ūů
Final Ū.Ŭů May ūű

 Instructor: Dr. Dave Rosoff
Assistant: Sam Chandler

 Boone Hall ūŪŬC

 MW ū:ŪŪ–Ŭ:ŭŪ; T ų:ūŪ–ūŪ:ūŪ, or by
appointment

 drosoff@collegeofidaho.edu

    @daverosoff

 https://cofi.instructure.com/

Preface: Learning outcomes

This course is designed to provide certain experiences, called “learn-
ing outcomes”, to students who successfully complete it. These out-
comes are enumerated in the margin.ū I explicitly include these out-

ū љђюџћіћє ќѢѡѐќњђѠ:
ū. Recognize and describe fun-

damental ideas from course
content described below.

Ŭ. Illustrate these ideas with
examples and translate them
into everyday terminology.

ŭ. Demonstrate the use of course
ideas on specific computing
problems.

Ů. Improve their programming
skills.

ů. Effectively discuss and solve
computing problems in group
seĴings.

Ű. Apply a range of algorithmic
techniques appropriately.

ű. Use valid C++ syntax to aid in
debugging code.

Ų. Plan, organize, and combine al-
gorithms to solve new problems,
as appropriate.

comes in the syllabus so that it is clear why I have chosen the various
course components (each of which is described below.) Each learn-
ing outcome is addressed by one or more components of the course:
homework, quizzes, in-class workshops and reflection writing assign-
ments, and exams. See the Grading section below for more informa-
tion.

Introduction

Welcome to CSC-ūůŪ, Computer Science I. I am pleased to be teach-
ing the course a third time. Like many of you, I have enjoyed using

mailto:drosoff@collegeofidaho.edu
https://cofi.instructure.com/


Ŭ ѡѕђ ѐќљљђєђ ќѓ іёюѕќ

computers for all of my life (that I can remember, anyway), and es-
pecially enjoy using them to solve problems. Solving problems of one
kind or another is what computer science is all about, even more than
mathematics (a closely allied field).

Many people refer to the first computer science course as “Pro-
gramming”, or “Intro programming”, or even more metonymically
by the name of the language used (in our case, C++). This is unfor-
tunate, because the principles we will develop are not so limited.ŬŬ Computer languages aren’t so different

as you might think, even though there
are hundreds of them in use. There’s
even a technical sense in which they
are all equivalent—that is, all equally
powerful. There’s no “best language”
out there to learn, or which you should
be learning. Rather, if you have a strong
command of the fundamentals of
computer science, you can learn any
language and use it appropriately.

They are fundamental to the whole discipline of computer science.
You may be surprised to learn that this discipline is not limited to the
writing of computer programs. Programming is essential to computer
science fundamentals, but there is more, much more, to the world of
computer science than writing code. I say all this by way of encourag-
ing you to remember that while most of what we’ll do in class could
be called “programming”, that is a rather narrow view of the whole
endeavor.

Tѕђ ѝџќяљђњ-Ѡќљѣіћє юћё юљєќџіѡѕњіѐ ѡђѐѕћіўѢђѠ you will
learn in this course are general, even universal: all other programming
languages of interest have most of the same structuresŭ that you willŭ A profusion of structures does not

add to the computational power of
a language. Instead it adds to the
expressive power, helping programmers
to mold their code more exactly to their
thinking. Availability of additional
programming structures also can help
to produce more elegant, simple, or
convenient programs. (Usually, those
three qualities go together.)

use in C++, and many problems in computing and elsewhere are
amenable to the same methods of reductive solution.Ů If you do not

Ů Breaking a problem into smaller pieces
to be solved individually.

go on to a career in computer science or even take a second course, I
hope very much that you will still be able to make use of these ideas,
techniques, and skills elsewhere in your life.

Programming is also fun. It is fun because it is creative. You are
creating something out of nothing. You are making order, structure,
where before there was none. Some people find a joy in it similar to
the joy of music or poetry. It’s easy to go overboard with comparisons
like that, so I will leave them alone and add that the structures de-
signed by programmers are often of significant benefit to themselves
and to other people. This is the nature of abstraction. If you can solve
a problem in a general way, you only have to solve it once.

You will get to play when you work on homework for this class, in a
way similar to how art or creative writing students are playing when
they are involved in the creation of their media. Many, many people
over the seven decades encompassing the history of modern computer
programmingů have found themselves unexpectedly staying up all

ů Computer programming properly
begins in at least the early ūųth century,
when Charles Babbage’s Analytical
Engine was programmed with punched
cards. Such cards had been in use to
program looms to weave different
paĴerns for thirty years at that point.
It is thought by some that musical
automata developed by the medieval
Muslim polymath al-Jazarī were also
programmable: the movement of small
pegs would change the programmed
movements of the robot musicians.
Al-Jazarī lived and worked in the ūŭth
century, in what is now Turkey and
Kurdistan.

night, coding—just because they were having fun doing it.
The fun and excitement of programming can bring together the

most different kinds of people. Anyone can do it and change their
lives and minds for the beĴer. The ideas in computer science are very



ѐѠѐ-₁₅ ₀ ѐќњѝѢѡђџ Ѡѐіђћѐђ і ŭ

powerful. They can rewire your mind from the inside out.

Catalog description

“An introduction to fundamental principles of computer science. A
brief introduction to computers, including data representation and
storage and digital computation. Program design and implementation
skills are developed using a high-level language. Topics may include
fundamental programming constructs (e.g., functions, branching,
looping), algorithm design, data abstraction, recursion, and object-
oriented programming.”

Text

Our text is C++ for Everyone by Cay S. Horstmann, second edition. If
you do not already have it, please order it immediately. You will not
be able to complete the reading assignments without it.Ű

Ű You need the second edition.

Grading

Scores are computed as a weighted average, with the following
weights: participation and aĴendance Ū.ūŪ, in-class labs/workshops Ū.ūŪ,
homework Ū.Ŭů, quizzes Ū.ūů, midterm exam Ū.ūů, and final exam Ū.Ŭů.
Observe that the weights sum to ū = ūŪŪ%.ű The exact determination

ű The exams are relatively lightly
weighted, but homework, class par-
ticipation, and in-class workshops each
weigh in at ūů%–ŬŪ%. It is not possible
to earn a B or beĴer in this class unless
you are steadily and persistently en-
gaged, including aĴending class and
actively participating! It is my hope that
this reduces the incentives and payoffs
to cram and realigns them in the ap-
propriate direction, supporting steady
incremental effort.

of leĴer grades from these scores depends on the final distribution
of scores in the class, but you can expect a C for earning űů% of the
points, a C+ for űŲ%, a B– for ŲŪ%, and so on.

Workshops & Labs

This course functions beĴer as an interactive course than as a pure lec-
ture. It is easier to stay engaged. We use in-class activities (sometimes
full-period labs) to explore ideas from the text, go into greater depth,
and guide you through examples.Ų Instead of doing these at home,

Ų In-class activities address learning
outcomes ū, Ŭ, ŭ, and ů, and sometimes
others.

we will use class time to work on them, so that you can get help when
you get stuck. Occasionally you may need to finish them outside of
class, if we don’t have enough time to finish. They have proved to be
very valuable in helping students get main ideas before tackling big-
ger programming projects. The workshops and the homework are the
heart of the course.ų

ų Workshops are often submiĴed on
paper, the same day as they are com-
pleted. Labs are due in Canvas or as
otherwise specified. You should have
plenty of time in class to make sure you
understand properly, but if you need
more time, you are welcome to come to
office hours to talk about them.



Ů ѡѕђ ѐќљљђєђ ќѓ іёюѕќ

Homework

Homework in this class consists mostly of programming assignments
(actual code, submiĴed online). We may occasionally have problem
sets (batches of short questions you’ll answer on paper).
ū. Programming assignmentsūŪ assigned approximately weekly.ūŪ Programming assignments address

learning outcomes ŭ, Ů, Ű, ű, and Ų. You will have several days to work on these. In a program-
ming assignment, you will apply ideas and techniques from
your reading, homework, and workshops to a specific and
more involved problem. Solutions to programming assign-
ments must be working C++ source code, submiĴed via Can-
vas. I strongly encourage you to do your programming in Sub-
lime Text ŭ. Full-credit solutions match example runs exactly,
function as specified, are properly laid out and indented, and
are free of typographical errors and appropriately commented.

Ŭ. Problem setsūū assigned occasionally. You will have a day orūū Problem sets address learning out-
comes ū, Ŭ, ŭ, and ű. two to work on these. Problem sets are to be completed on

paper, probably with a pencil or pen, although you may type
your solutions if the results are professional. Your write-ups
should be clear, complete, and free of typographical errors. I
am happy to talk about these problems in office hours with
you.

Exams

Two exams are given: one in-class midterm, and one final exam.ūŬūŬ The date of the midterm is tentative.
Midterm exam: Tuesday, March ūů
Final Exam: May ūű, Ų:ŭŪ am–ūū:ŭŪ am
Exams address learning outcomes ū, Ŭ,
Ű, ű, and Ų.

I will consider make-ups only with compelling, documented reasons. The
final exam takes place at the indicated date and time. It cannot be
rescheduled for any reason. Make your travel plans accordingly. If you
miss an exam, the other exam will constitute the whole of your exam
grade, but it is not possible to earn more than a C without taking the
final exam regardless of what else happens.

Software

Like most specialized tasks, computer programming requires spe-
cialized software. If you wish to use your own computer, you will
probably need to install some things. At a minimum, you need a text
editor (Sublime Text ŭ) and a C++ compiler (the MinGW package, on
Windows).ūŭ If you use Windows, you probably need both; if you use

ūŭ For text editors, there are many
choices. Choices with a † are free.
All platforms: Sublime Text ŭ. This is the

editor I would prefer you to use. It is
very powerful and extensible.

Windows: †Notepad++
Mac: †TextWrangler, BBEdit
Linux: †gedit, †Emacs, †vim
It is extremely wrong and bad to use
word processors (like Word) to write
code. Don’t do this.

a Mac or any Linux operating system, you just need to install Sub-
lime Text ŭ. Macs and Linux both ship with the standard GNU g++

compiler. Windows users should install MinGW (follow all directions



ѐѠѐ-₁₅ ₀ ѐќњѝѢѡђџ Ѡѐіђћѐђ і ů

carefully).
The computers we have for use in class have Sublime Text ŭ in-

stalled. I use Sublime Text for many hours each week and have grown
to love it, but it is not free (trial period, $űŪ for license). Editor choice
is a very personal maĴerūŮ and you may want to experiment with ūŮ See the Wikipedia entry for editor war.

different editors on your own.
The use of an IDE (integrated development environment) is not rec-

ommended for this class. If you choose to use one and have problems
with it, I may not be able to assist you. I recommend that you stick to
writing your code in Sublime Text.

Academic integrity

I encourage all students to form study groups and collaborate on
homework; each student is of course individually responsible for their
own work. Collaborators must be acknowledged.

Students are expected to complete all graded work in accordance
with the College Honor Code. Plagiarism, cheating, or borrowing
without proper credit will not be tolerated. Violations of academic
honesty can result in loss of credit on an assignment, failure on an
exam, or failure in the course. Referrals will be made to the Vice
President for Academic Affairs for any party involved in academic
dishonesty.

Special accommodations

Students who have documented disabilities as addressed by the
Americans With Disabilities Act and who need any test or course
materials to be furnished in an alternative format should notify me
immediately (during the first two weeks of class). Reasonable efforts
will be made to accommodate your needs.

GOOD LUCK THIS SEMESTER !

http://en.wikipedia.org/wiki/Editor_war

